# Министерство здравоохранения Иркутской области

областное государственное бюджетное профессиональное образовательное учреждение «Тулунский медицинский колледж»

# МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

по изучению дисциплины / профессионального модуля / междисциплинарного курса

физика

Специальность 34.02.01 Сестринское дело

Очная форма обучения

по программе базовой подготовки

Тулун 2021 г. РАССМОТРЕНО И ОДОБРЕНО

на заседании ЦМК № 1

от «<u>28</u>» об 2021г

Заведующий ЦМК

**PACCMOTPEHO:** 

Педагогическим советом Протокол № *4* 

от « <u>30</u> » <u>06</u> 2021г.

| <b>Составитель:</b> Топчий М.Н. Ф.И.О., ученая степень, звание, должность                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Рецензент:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ф.И.О., ученая степень, звание, должность                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Методические рекомендации для студентов по изучению учебной дисциплины физика предназначены для обеспечения обучающихся по специальности 34.02.01 Сестринское дело                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (очная форма обучения) учебно-методическим комплексом.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Методические рекомендации для студентов разработаны в соответствии с рабочей программой и календарно - тематическим планом по учебной дисциплине физика. В соответствии с учебным планом на изучение рабочей программы учебной дисциплины физика отводится 180 часов. Из них:  Теоретические занятия — 120 часов Практические занятия — 20 часов Самостоятельная работа студентов — 60 часов Методические рекомендации для студентов включают в себя следующие разделы:  1. Методические рекомендации для студентов по самоподготовке к занятиям; 2. Методические рекомендации для студентов по самостоятельной работе; 3. Вопросы для подготовки к промежуточной аттестации; 4. Рекомендуемая литература (основная и дополнительная). |
| Данные методические рекомендации позволяют студентам получить необходимую информацию для подготовки к любому виду занятий.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Рассмотрено на заседании Цикловой методической комиссии ОГБПОУ «Тулунский

медицинский колледж», Протокол № \_\_\_ от «\_\_\_\_» \_\_\_\_ 2021 \_\_\_\_г.

# СОДЕРЖАНИЕ

|                                                                | Стр. |
|----------------------------------------------------------------|------|
| 1. Методические рекомендации для студентов по самоподготовке к | 1    |
| митиям                                                         | 7    |
| 2. Методические рекомендации для студентов по самостоятельной  | 4    |
| работе                                                         |      |
| 3. Критерии оценивания самостоятельной работы                  | 25   |
| 4. Методические рекомендации по решению задач                  | 28   |
| 4.Вопросы для подготовки к промежуточной аттестации            | 30   |
| 5. Рекомендуемая литература (основная и дополнительная)        | 35   |

# 1. Методические рекомендации для студентов по самоподготовке к занятиям

### Разлел 1 Механика

# Тема 1.4 Законы Ньютона. Взаимодействие тел. Принцип суперпозиции сил

Вид занятия: теоретическое

Продолжительность занятия: 90мин

#### Основные понятия:

Закон инерции, инертность тела, масса тела, принцип суперпозиции, силы действия и противодействия.

# Вопросы для самоконтроля:

- 1. Перечислить и дать формулировки законам Ньютона.
- 2. Применение полученных знаний для объяснения реальных физических явлений

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности;
- умение анализировать и представлять информацию в различных видах;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни.

## Самостоятельная работа

- 1. Работая с учебником, дополнительной литературой составить словарь физических терминов по теме «Динамика».
- 2.Ответить на вопросы
  - С железнодорожным составом связана система отсчета. В каких случаях она будет инерциальной: а) поезд стоит на станции; б) поезд отходит от станции; в) поезд подходит к станции; г) движется равномерно на прямолинейном участке пути дороги?
  - По горизонтальной прямолинейной дороге равномерно движется автомобиль с работающим двигателем. Не противоречит ли это первому закону Ньютона
  - Инерциальная ли система отсчета, движущаяся с ускорением, относительно какойлибо инерциальной системы?
  - Приведите примеры, в которых проявляется закон Ньютона.

### Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 2.7—2.9

# Тема 1.5 Виды сил и их характеристики.

Вид занятия: теоретическое

Продолжительность занятия: 90мин

#### Основные понятия:

Сила упругости, сила реакции опоры, сила натяжения, сила трения (покоя, скольжения, качения), вес и невесомость, сила тяжести, сила Всемирного тяготения

### Вопросы для самоконтроля:

- 1. На какие группы делятся все силы?
- 2. Формулы для вычисления сил.

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение самостоятельно добывать новые для себя физические знания, используя для этого доступные источники информации;
- использование основных интеллектуальных операций: постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов для изучения различных сторон физических объектов, явлений и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере.

### Самостоятельная работа

1. Работая с учебником, дополнительной литературой составить словарь физических терминов по теме «Виды сил».

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 2.4, 2.6, 2.10.

## Тема 1.8 Механическая работа и мощность

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

### Основные понятия:

Определение и единица работы. Условия, при которых работа положительна, отрицательна, равна нулю. Работа сил реакции, трения, тяжести, действующих на тело. Понятие средней и мгновенной мощности. Единица мощности.

## Вопросы для самоконтроля:

- 1. Как вычислить работу сил реакции, трения, тяжести, действующих на тело?
- 2. Как вычислить среднюю и мгновенную мощность?
- 3. В чём измеряется работа и мощность?

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических

задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности;

### Самостоятельная работа

1. Работая с учебником, дополнительной литературой составить словарь физических терминов по теме «Механическая работа и мощность».

### 2.Решить задачи

### Первый уровень.

- 1. Измеряя силу трения, ученик протянул брусок по столу на расстояние 30 см. Вычислите работу ученика, если динамометр показывал 1,5 Н.
- 2. Карапуз, играя автомобильчиком, провез его 90 см, прикладывая к веревочке силу 3,5 Н. Вычислите работу карапуза.
- 3. Мальчик массой 39 кг лезет вверх по лестнице. Какую работу он совершит, подняв себя на высоту 4,5 м?

# Второй уровень.

- 1. Обезьяна массой 12 кг карабкается вверх по лианам. Какую работу она совершит, поднявшись на 6,2 м?
- 2. На какую высоту было поднято тело массой 20 кг, если при этом была совершена работа 680 Дж?
- 3. При подъеме тела на высоту 2,5 м была совершена работа 1225 Дж. Какова масса поднимаемого тела?

### Третий уровень.

- 1. Велосипедист движется со скоростью 12 км/ч в течение 15 мин. Какую работу совершил велосипедист на этом отрезке пути, если сила сопротивления движению 98 Н?
- 2. Тело движется под действием силы 22 Н в течение 12 мин. С какой скоростью движется тело, если при этом была совершена работа 158400 Дж?
- 3. В воде с глубины 5 м поднимают до поверхности бетонный блок размерами 40х120 см. Найдите работу по подъему камня.

### Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 2.15-2.16

### Тема 1.9 Закон сохранения энергии

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

### Основные понятия:

Механическая энергия, кинетическая энергия, потенциальная энергия, закон сохранения энергии.

### Вопросы для самоконтроля:

- 1. Какая энергия называется кинетической?
- 2. Какая энергия называется потенциальной?
- 3. Как вычислить кинетическую и потенциальную энергии?

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное использование физической терминологии и символики,

использование различных видов познавательной деятельности для решения физических задач.

- применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

### Самостоятельная работа.

- 1. Составление конспекта.
- 2. Выполнение теста:
- 1.Потенциальная энергия упруго деформированного тела вычисляется по формуле ...
  - **a)**  $E = \kappa x^2 / 2$ . **6)** E = mgh **B)**  $E = mv^2 / 2$ . **r)**  $E = \kappa x^2$ .
- 2. При взаимодействии тел в замкнутой системе геометрическая сумма импульсов тел.
  - **а)** увеличивается; **б)** уменьшается; **в)** не изменяется  $\Gamma$ ) равна нулю.
- 3. Как изменится потенциальная энергия упруго деформированной пружины, если её удлинение уменьшится в 3 раза?
  - а) увеличится 3 раза. б) уменьшится в 3 раза
  - в) увеличится в 9 раз г) уменьшится в 9 раз.
- 4. Как изменится кинетическая энергия тела, если её скорость увеличится в 2 раза?
  - **а)** увеличится 2 раза. **б)** увеличится 4 раза. **в)** уменьшится в 2 раза . г) уменьшится в 4 раза .
- 5. Груз равномерно перемещается вертикально вниз. Работа силы тяжести в этом случае ...
  - а) отрицательна б) положительна
  - в) равна нулю; г) больше работы силы упругости.

Ответы: 1. в); 2. в); 3. г); 4. б); 5. б).

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 2.15-2.17

### Раздел 2 Механические колебания и волны

# Тема 2.1 Механические колебания: амплитуда, период, частота колебаний

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

### Основные понятия:

Колебательное движение, гармонические колебания, основные характеристики колебательного движения (амплитуда, период, частота, фаза колебания, начальная фаза, смещение точки).

### Вопросы для самоконтроля:

- 1. Виды механических колебаний: амплитуда, период, частота колебаний»
- 2. Определения и вычисления: амплитуда, период, частота,

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- сформированность умения решать физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;

### Самостоятельная работа.

Используя термины, изученные в разделе «Механические колебания» (например, перемещение, скорость, ускорение, вес, невесомость, амплитуда, период и т.д.), составить кроссворд.

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 4.1-4.2

## Тема 2.2 Свободные колебания. Пружинный и математический маятники

Вид занятия: теоретическое

Продолжительность занятия: 90мин

### Основные понятия:

Свободное колебание, математический маятник, пружинный маятник.

# Вопросы для самоконтроля:

- 1. Условия возникновения колебаний
- 2. Формулы вычислений периода колебаний маятника

### Перечень знаний, которыми студенты должны овладеть в результате

#### изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

### Самостоятельная работа.

- 1. Работая с учебником, составить словарь физических терминов по теме «Механические колебания и волны».
- 2. Решить задачи из Сборника задач по физике для студентов 1 курса специальности СД (Захарченко Л.Н.)

**IVK1.** Точка совершает колебания по закону  $x = 2 \cdot 10^{-4} \cos 3140 t$  (величины выражены в единицах СИ). Определите: а) за какие промежутки времени точка проходит отрезки пути, равные половине амплитуды колебаний; б) чему равны средняя скорость и среднее ускорение точки за эти промежутки времени.

**IVK2.** Точка, совершающая гармонические колебания, в некоторый момент времени имеет смещение, скорость и ускорение, равные соответственно  $4 \cdot 10^{-2}$  м, 0.05 м/с, 0.8 м/с<sup>2</sup>. Чему равны амплитуда и период колебаний точки? Чему равна фаза колебаний в рассматриваемый момент времени? Каковы максимальная скорость и ускорение точки?

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 4.1-4.2

# Тема 2.5 Механические волны

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

# Основные понятия:

Механические волны, продольные волны, поперечные волны.

### Вопросы для самоконтроля:

- 1. Какие виды волн надо знать?
- 2. Формулы вычислений скорости и длины волны

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

# Самостоятельная работа

- 1. Работая с учебником, составить словарь физических терминов по теме «**Механические волны**».
- 2. Решить задачу из Сборника задач по физике для студентов 1 курса специальности СД

**IVK7.** На озере в безветренную погоду с лодки бросили тяжелый якорь. От места бросания якоря пошли волны. Человек, стоящий на берегу, заметил, что волна дошла до него через 50 с, расстояние между соседними гребнями волн 0,5 м, а за 5 с было 20 всплесков о берег. Как далеко от берега находилась лодка

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 4.1-4.

## Тема 2.6 Упругие волны. Ультразвук и его применение.

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

#### Основные понятия:

Скорость звука, тембр звука, порог слышимости, интенсивность звука.

### Вопросы для самоконтроля:

- 1. Какие звуки носят название инфра и ультра?
- 2. Какие звуки воспринимает человеческое ухо?

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

## Самостоятельная работа

- 1. Подготовить сообщение: Использование ультразвука в медицине
- 2. Решить задачи из Сборника задач по физике для студентов 1 курса специальности СД (Захарченко Л.Н.)

**IVK7.** На озере в безветренную погоду с лодки бросили тяжелый якорь. От места бросания якоря пошли волны. Человек, стоящий на берегу, заметил, что волна дошла до него через 50 с, расстояние между соседними гребнями волн 0,5 м, а за 5 с было 20 всплесков о берег. Как далеко от берега находилась лодка?

**IVK8.** Звук взрыва, произведенного в воде вблизи поверхности, приборы, установленные на корабле и принимающие звук по воде, зарегистрировали на 45 с раньше, чем он пришел по воздуху. На каком расстоянии от корабля произошел взрыв?

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017.

### Тема 2.8 Электромагнитные волны, их применение

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

### Основные понятия:

Электромагнитное поле, электромагнитные волны, радиосвязь.

# Вопросы для самоконтроля:

- 1. Изобретение радио А.С. Поповым.
- 2. Принципы радиосвязи

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

### Самостоятельная работа

- 1. Сообщение подготовить: Использование инфракрасного, ультрафиолетового, рентгеновского излучения в меди<u>и</u>ине
- 2.Решение задач
  - На какой частоте работает радиостанция, передавая программу на волне 250 м?
  - На какой частоте суда передают сигнал бедствия (СОС) если по международному соглашению длина радиоволны этого сигнала должна быть равной 600 м?
  - Чему равна длина волн, посылаемых радиостанцией, работающей на частоте 1400 кГц?
  - Чему равен период колебаний в ЭМВ, распространяющейся в воздухе с длиной волны 3 м?

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017.

# Раздел 3 Основы молекулярной физики и термодинамики Тема 3.1 Основные положения молекулярно-кинетической теории

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

### Основные понятия:

Основные положения молекулярно-кинетической теории. Размеры и масса молекул и атомов. Броуновское движение. Диффузия. Силы и энергия межмолекулярного взаимодействия. Строение газообразных, жидких и твердых тел. Скорости движения молекул и их измерение.

### Вопросы для самоконтроля:

- 1. Основные положения молекулярно-кинетической теории
- 2. Формулы нахождения массы и числа частиц

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

## Самостоятельная работа

- 1. Подготовить сообщение «Атомистические учения»
- 2. Решить задачи из Сборника задач по физике для студентов 1 курса специальности СД (Захарченко Л.Н.)

**IITM1.** Сколько молекул содержится в одном грамме кислорода?

**IITM2.** Зная, что в одном моле любого вещества  $6.02*10^{23}$  молекул, найдите массу молекулы кислорода, если известно, что  $\mu$ =0,032 кг/моль.

**IITM3.** За 5 суток полностью испарилось  $5*10^{-2}$  кг воды. Сколько в среднем молекул вылетало с поверхности воды за 1 с?

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§6.1-6.3

### Тема 3.2 Идеальный газ

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

### Основные понятия:

Идеальный газ, давление газа, абсолютный нуль температуры, термодинамическая шкала температуры, молярная газовая постоянная.

### Вопросы для самоконтроля:

- 1. На какие виды делятся шкалы температур?
- 2. Как выразить температуру в Кельвинах?

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения,

эксперимента) для изучения различных сторон окружающей действительности.

### Самостоятельная работа

Решить задачи:

- 1.Определить массу кислорода, занимающего объем 600 л при температуре 300 К и нормальном атмосферном давлении.
- 2.Газ при давлении 32 кПа и температуре 290 К занимает объем 87 л. Найти объем газа при нормальных условиях.
- 3. Давление газа при 293 К равно 107 кПа. Каково будет давление газа, если его нагреть при постоянном объеме до 423 К? Охладить при постоянном объеме до 250 К?

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 6.6-6.7

## Тема 3.3 Основы термодинамики

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

## Основные понятия:

Внутренняя энергия идеального газа, теплоемкость.

### Вопросы для самоконтроля:

- 1. Количество теплоты при тепловых процессах
- 2. Формулы вычислений количества теплоты при тепловых процессах

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

### Самостоятельная работа

Решить задачи:

- 1.Определить температуру воды, установившуюся после смешивания 6 кг воды при температуре  $42^{0}$ С и 4 кг воды при  $72^{0}$ С.
- 2. Какое количество теплоты нужно затратить, чтобы расплавить 100 г льда, имеющего температуру -  $20^{\circ}$ C?
- 3.В алюминиевый калориметр массой  $200 \, \Gamma$ , содержащий  $340 \, \Gamma$  воды при температуре  $24^{0} \, \text{C}$ , опустили  $82 \, \Gamma$  льда при  $0^{0} \, \text{C}$ . Весь лед расплавился. Найти установившуюся в калориметре температуру.

### Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 8.1-8.

## Тема 3.5 Второе начало термодинамики

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

#### Основные понятия:

Термодинамическая шкала температур, холодильные машины, тепловые двигатели,

КПД теплового двигателя

### Вопросы для самоконтроля:

- 1. Типы тепловых двигателей
- 2. Вычисление КПД

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- сформированность умения решать физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;

# Самостоятельная работа

Подготовить сообщение «Тепловые двигатели и охрана окружающей среды»

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 8.6-8.8

### Тема 3.6 Свойства паров. Испарение и конденсация

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

### Основные понятия:

Испарение и конденсация, насыщенный, абсолютная и относительная влажность воздуха.

## Вопросы для самоконтроля:

- 1. Приборы для определения влажности
- 2. Вычисление влажности воздуха

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни.

## Самостоятельная работа

Подготовка сообщения «Приборы для определения влажности воздуха и их применение».

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 7.1-7.3

#### 3.8 Свойства жидкостей

Вид занятия: теоретическое

Продолжительность занятия: 90мин

### Основные понятия:

Поверхностный слой жидкости, энергия поверхностного слоя.

### Вопросы для самоконтроля:

- 1. Поверхностное натяжение жидкости
- 2. Вычисление коэффициента поверхностного натяжения жидкости
- 3. Влажность воздуха

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- сформированность умения решать физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;

# Самостоятельная работа

### Решить задачи:

- Давление насыщенного пара воды при температуре  $20^{\circ}$ C составляет 2.33 кПа. Определите, какая масса воды содержится в воздухе комнаты объёмом 50 м ,при относительной влажности 60%. Молярная масса воды 0.018 кг/моль.
- В сауне при относительной влажности 5% парциальное давление пара 6 кПа. Определить давление насыщенного пара при данной температуре
- Давление насыщенного пара при температуре 20°C равно 2,33 кПа. Какое количество вещества(воды) содержится в воздухе комнаты объёмом 100 м
- При такой температуре, если относительная влажность воздуха составляет 65 %?
- Давление насыщенного пара воды при температуре  $20^{0}$ C составляет 2.33 кПа. Определите, какая масса воды содержится в воздухе комнаты объёмом 50 м<sup>3</sup> ,при относительной влажности 60%. Молярная масса воды 0.018 кг/моль.

### Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 7.1-7.

Тема 3.9 Свойства твёрдых тел

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

Основные понятия:

Закон Гука, механические свойства твердых тел, тепловое расширение твердых тел и

жидкостей.

Вопросы для самоконтроля:

1. Перечислить свойства твердых тел

2. Вычисление модуля Юнга

Перечень знаний, которыми студенты должны овладеть в результате изучения

данной темы:

- сформированность умения решать физические задачи;

- сформированность умения применять полученные знания для объяснения условий

протекания физических явлений в природе, профессиональной сфере и для принятия

практических решений в повседневной жизни;

Самостоятельная работа

Подготовить сообщение «Кристаллические тела, жидкие кристаллы, используемые в

мелицине»

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 7.7-7.9

Раздел 4 Электродинамика

Тема 4.2 Закон Кулона. Конденсаторы

Вид занятия: теоретическое

Продолжительность занятия: 90 мин

Основные понятия:

Электроемкость заряженного тела, конденсатор, энергия электростатического поля

Вопросы для самоконтроля:

1. Перечислить виды конденсаторов

2. Вычисление электроемкости.

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- сформированность умения решать физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;

## Самостоятельная работа

Составление словаря физических терминов

Литература для подготовки:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, §§ 9.7- 9.11

# Тема 4.4 Законы постоянного тока

Вид занятия: теоретическое

Продолжительность занятия: 90мин

### Основные понятия:

Сторонние силы внутри источника тока, последовательное, параллельное, смешанное соединений источников.

### Вопросы для самоконтроля:

- 1. Законы Ома для электрической цепи
- 2. Запись формул законов Ома для электрической цепи

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

# Самостоятельная работа

Решить задачи:

- 1. Найти ЭДС и внутреннее сопротивление элемента, если при сопротивлении внешней цепи 2 Ом ток равен 0,6 A, а при сопротивлении 9 Ом ток O,2 A.
- 2. Найти напряжение на концах медного провода длиной 200 м и диаметром 1,2мм, если сила тока в нем равна 5 А.
- 3. Даны три проводника сопротивлением 4 Ом, 6 Ом, 12 Ом. Найти их общее сопротивление при последовательном и параллельном соединении.
- 4. На цоколе лампочки карманного фонаря написано: 3,5 B, 0,28 A. найти сопротивление в рабочем режиме и потребляемую мощность. На баллоне сетевой лампы накаливания написано: 220 B, 60 Bт. Найти силу тока и сопротивление в рабочем режиме.

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017, § 10.9

# Тема 4.6 Электрический ток в различных средах

Вид занятия: теоретическое

Продолжительность занятия: 90мин

Основные понятия:

Проводимость металлов, электролиз, газовый разряд, полупроводники

## Вопросы для самоконтроля:

- 1. Законы Фарадея
- 2. Запись формул законов Фарадея
- 3. Проводимость металлов
- 4. Полупроводники

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

# Самостоятельная работа

- 1. Устный опрос по вопросу: «Полупроводниковые приборы и их применение».
- 2. Составление конспекта

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017.

# Тема 4.7 Магнитное поле

Вид занятия: теоретическое

Продолжительность занятия: 90мин

### Основные понятия:

Постоянные магниты, магнитное поле тока, магнитный поток.

### Вопросы для самоконтроля:

- 1. Электроизмерительные приборы
- 2. Магнитные свойства вещества
- 3. Применение магнитов

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

## Самостоятельная работа

Составление конспекта по темам «Электроизмерительные приборы», «Магнитные свойства вещества»

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 11.1-11.2

# Тема 4.8 Электромагнитная индукция

Вид занятия: теоретическое

Продолжительность занятия: 90мин

О Электромагнитная индукция, индукционный ток, правило Ленца.

### Вопросы для самоконтроля:

- 1. Правило левой руки
- 2. Вычисление ЭДС электромагнитной индукции

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести

дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;

- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

# Самостоятельная работа

Используя материалы дополнительной литературы, Интернет- ресурсы, подготовить сообщения о жизни и деятельности ученых-физиков: Ампер, Лоренц, Фарадей.

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. § 11.

# Раздел 5 Оптика

# Тема 5.2 Законы отражения и преломления света

Вид занятия: теоретическое

Продолжительность занятия: 90мин

### Основные понятия:

Отражение, преломление света.

### Вопросы для самоконтроля:

- 1. Законы отражения, преломления света.
- 2. Вычисление фокусного расстояния собирающей линзы

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

### Самостоятельная работа

Используя материалы дополнительной литературы, Интернет- ресурсы, подготовить сообщения о жизни и деятельности ученых-физиков: Гюйгенс, Ньютон, Фуко, Майкельсон, Физо

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. § 14.1.-14.

## Тема 5.4 Волновые свойства света. Интерференция света

Вид занятия: теоретическое

Продолжительность занятия: 90мин

#### Основные понятия:

Волновые свойства света, интерференция света.

# Вопросы для самоконтроля:

- 1. Интерференция света
- 2. Условия интерференции света
- 3. Дифракция света
- 4. Дисперсия света

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

# Самостоятельная работа

- 1. Прочитать материал в учебнике, дополнительной литературе.
- 2. Составить конспект по темам: «Интерференция света», «Дифракция света».

«Дисперсия света»

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. § 14.4.-14.5

### Раздел 6 Элементы квантовой физики

### Тема 6.1 Фотоэффект

Вид занятия: теоретическое

Продолжительность занятия: 90мин

### Основные понятия:

Фотоэлектрический эффект, красная граница фотоэффекта, технические устройства, основанные на использовании фотоэффекта.

# Вопросы для самоконтроля:

- 1. Уравнение А. Эйнштейна
- 2.Вычисление красной границы фотоэффекта.

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

# Самостоятельная работа

Выполнение домашней контрольной работы по теме «Фотоэффект»

### Решить задачи:

- 1.Красная граница фотоэффекта для калия  $6,2\ 10^{-5}$ см. Найти работу выхода электронов из калия.
- 2. Работа выхода электронов из ртути равна 4,53 эВ. Возникнет ли фотоэффект, если на поверхность ртути будет падать видимый свет?
- 3. Какой должна быть длина волны излучения, падающего на стронций, чтобы при фотоэффекте максимальная кинетическая энергия электронов равнялась 1,8 10<sup>-19</sup> Дж.

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 16.1-16.5

## Тема 6.2 Квантовые генераторы

Вид занятия: теоретическое

Продолжительность занятия: 90мин

# Основные понятия:

Лазер, квантовый генератор.

# Вопросы для самоконтроля:

- 1. Работы ученых в изобретении лазера
- 2.Практическое значение изобретений

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.

### Самостоятельная работа

Подготовить сообщение: Лазеры в медицине.

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. §§ 16.1-16.3

### Тема 6.4 Физика атома и атомного ядра

Вид занятия: теоретическое

Продолжительность занятия: 90мин

### Основные понятия:

Искусственная радиоактивность.

# Вопросы для самоконтроля:

- 1. Радиоактивные превращения
- 2. Ядерный реактор

# Перечень знаний, которыми студенты должны овладеть в результате изучения данной темы:

- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
- использование различных видов познавательной деятельности для решения физических задач, применение основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей действительности.
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни

### Самостоятельная работа

Подготовка рефератов на тему «Термоядерный синтез», «Ядерная энергетика» Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. § 18.10.

### 3. Критерии оценивания работы студентов

## Критерии оценивания контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов. Оценка «4» ставится за работу, выполненную полностью, но при наличии в ней не более одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

Оценка «3» ставится, если ученик правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочётов, не более одной грубой ошибки и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трех недочётов, при наличии 4- 5 недочётов. Оценка «2» ставится, если число ошибок и недочётов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы.

### Критерии оценивания лабораторных работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит в условиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ погрешностей.

**Оценка** «**4**» ставится, если выполнены требования к оценке «**5**», но было допущено два - три недочета, не более одной негрубой ошибки и одного недочёта.

Оценка «З» ставится, если работа выполнена не полностью, но объем выполненной части таков, позволяет получить правильные результаты и выводы: если в ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

### Критерии оценивания устных ответов учащихся

Оценка «5» ставиться в том случае, если учащийся показывает верное понимание физической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения: правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану, сопровождает рассказ собственными примерами, умеет применять знания в новой ситуации при выполнении практических заданий; может установить связь между изучаемым и ранее изученным материалом по курсу физики, а также с материалом, усвоенным при изучении других предметов.

Оценка «4» ставиться, если ответ ученика удовлетворяет основным требованиям на оценку 5, но дан без использования собственного плана, новых примеров, без применения знаний в новой ситуации, без использования связей с ранее изученным материалом и материалом, усвоенным при изучении др. предметов: если учащийся допустил одну ошибку или не более двух недочётов и может их исправить самостоятельно или с небольшой помощью учителя.

Оценка «3» ставиться, если учащийся правильно понимает физическую сущность рассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы в усвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросов программного материала: умеет применять полученные знания при решении простых задач с использованием готовых формул, но затрудняется при решении задач, требующих преобразования некоторых формул, допустил не более одной грубой ошибки и двух недочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов. Оценка «2» ставится, если учащийся не овладел основными знаниями и умениями в соответствии с требованиями программы и допустил больше ошибок и недочётов чем

необходимо для оценки «3».

### Критерии оценивания расчетной задачи.

Решение каждой задачи оценивается, исходя из критериев, приведенных в таблице

| Качество решения                                                                                                                                                                                                                                            |   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| Правильное решение задачи:                                                                                                                                                                                                                                  |   |  |  |  |
| Получен верный ответ в общем виде и правильный численный ответ с указанием его размерности, при наличии исходных уравнений в «общем» виде – в «буквенных» обозначениях;                                                                                     | 5 |  |  |  |
| отсутствует численный ответ, или арифметическая ошибка при его получении, или неверная запись размерности полученной величины; задача решена по действиям, без получения общей формулы вычисляемой величины.                                                | 4 |  |  |  |
| Записаны ВСЕ необходимые уравнения в общем виде и из них можно получить правильный ответ (ученик не успел решить задачу до конца или не справился с математическими трудностями) Записаны отдельные уравнения в общем виде, необходимые для решения задачи. |   |  |  |  |
| Грубые ошибки в исходных уравнениях.                                                                                                                                                                                                                        | 2 |  |  |  |

# Перечень ошибок Грубые ошибки

- 1. Незнание определений основных понятий, законов, правил, основных положений теории, формул, общепринятых символов обозначения физических величии, единиц их измерения.
  - 2. Неумение выделить в ответе главное.
- 3. Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы задачи или неверные объяснения хода ее решения; незнание приемов решения задач, аналогичных ранее решенных в классе,

ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.

- 4. Неумение читать и строить графики и принципиальные схемы.
- 5. Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты, или использовать полученные данные для выводов.
- 6. Небрежное отношение к лабораторному оборудованию и измерительным приборам.
  - 7. Неумение определить показание измерительного прибора.
- 8. Нарушение требований правил безопасного труда при выполнении эксперимента.

### Негрубые ошибки

- 1. Неточности формулировок, определений, понятий, законов, теорий, вызванные неполнотой охвата основных признаков определяемого понятия, ошибки, вызванные несоблюдением условий проведении опыта или измерений.
- 2. Ошибки в условных обозначениях на схемах, неточности чертежей, графиков, схем.
- 3. Пропуск или неточное написание наименований единиц физических величин.
  - 4. Нерациональный выбор хода решения.

### Недочеты

- 1. Нерациональные записи при вычислениях, нерациональные приемы вычислении, преобразований и решений задач.
  - 2. Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
    - 3. Отдельные погрешности в формулировке вопроса или ответа.
- 4. Небрежное выполнение записей, чертежей, схем, графиков. Орфографические и пунктуационные ошибки.

Компетентностный подход определяет следующие особенности предъявления содержания образования: оно представлено в виде трех тематических блоков, обеспечивающих формирование компетенций. В первом блоке представлен информационный компонент, обеспечивающие совершенствование теоретических знаний по темам, основ безопасности жизнедеятельности, воспитание инициативности, самостоятельности, взаимопомощи, дисциплинированности, чувства ответственности. Во втором — операционный компонент, отражающий практические умения и навыки (освоение техники решения задач и развитие способностей действовать в нестандартных ситуациях. В третьем блоке представлен мотивационный компонент отражающий требования к учащимся. Таким образом, тематическое планирование обеспечивает взаимосвязанное развитие и совершенствование ключевых, общепредметных и предметных компетенций. Принципы отбора содержания связаны с преемственностью целей образования на различных ступенях и уровнях обучения, логикой внутрипредметных связей, а также с

**Личностная ориентация** образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся понимать причины и логику развития физических процессов открывает возможность для осмысленного восприятия всего разнообразия мировоззренческих, социокультурных систем,

возрастными особенностями развития учащихся.

существующих в современном мире. Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности. Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет выпускнику адаптироваться в мире, где объем информации растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.

# 4. Методические рекомендации по решению задач

# Алгоритм решения ЗАДАЧИ на Прямолинейное равномерное движение и примеры решения.

Задачи, описывающие движение, содержат два типа величин: векторные (имеющие направление) и скалярные (выражающиеся только числом). К векторным величинам при описании равномерного прямолинейного движения относятся скорость и перемещение.

Для перехода от векторов к скалярам выбирают координатную ось и находят проекции векторов на эту ось, руководствуясь следующим правилом: если вектор сонаправлен с осью, то его проекция положительна, если противоположно направлен — отрицательна. (Могут быть и более сложные случаи, когда вектор не параллелен координатной оси, а направлен к ней под некоторым углом.) Поэтому при решении задачи обязательно нужно сделать чертеж, на котором изобразить направления всех векторов и координатную ось. При записи «дано» следует учитывать знаки проекций.

При решении задач все величины должны выражаться в международной системе единиц (СИ), если нет специальных оговорок.

В решении задачи единицы величин не пишутся, а записываются только после найденного значения величины.

### Решение задач «Прямолинейное равномерное движение»

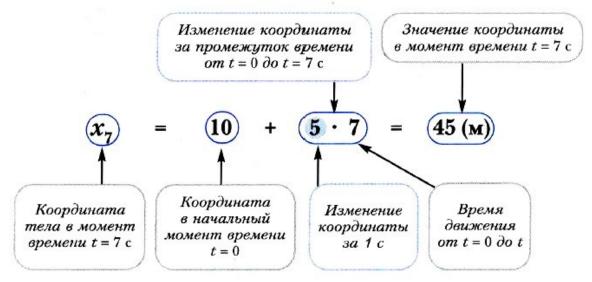
### 1. Прямолинейное движение

Прямолинейное движение тела — это движение, при котором тело движется по прямой линии в данной системе отсчёта.

Чтобы описать прямолинейное движение в выбранной системе отсчёта, необходимо в момент начала движения включить часы и измерять координату тела в различные моменты времени. Результаты измерений представляют в виде таблицы (табличный способ описания движения) или графика движения в осях: время — координата (графический способ описания движения).

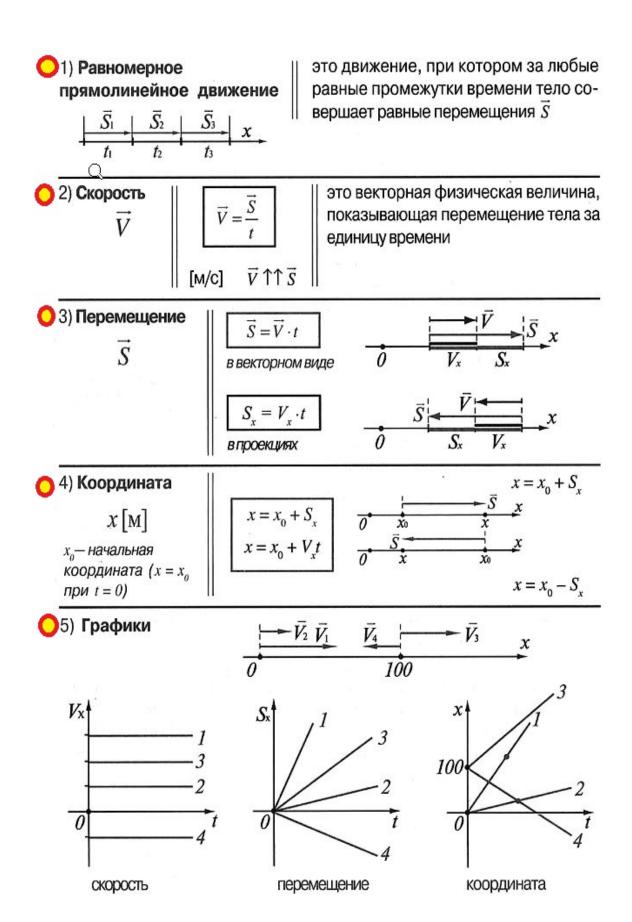
Если известна графическая зависимость координаты тела от времени в виде *непрерывной линии*, то движение тела описано полностью, т. е. можно:

- 1. Определить координату тела в любой момент времени движения (ответить на вопрос «где?»).
- 2. Определить момент времени, в который тело имело заданную координату (ответить на вопрос «когда?»).
- 3. Охарактеризовать движение тела (указать, покоилось ли тело, двигалось ли в положительном или отрицательном направлении координатной оси, как быстро изменялась его координата с течением времени).


# 2. Равномерное движение

Прямолинейное движение тела называют равномерным, если тело за любые равные промежутки времени проходит равные расстояния в одном и том же направлении. Изменением координаты тела за промежуток времени от момента  $t_1$  до момента  $t_2$  называют разность  $x_2$  —  $x_1$  между конечным и начальным значениями координаты.

Прямолинейное равномерное движение характеризуется тем, что изменение координаты тела за единицу времени (её обычно обозначают латинской буквой v) есть величина постоянная. График зависимости координаты x тела от времени t для такого движения представляет собой *прямую линию*. При этом зависимость координаты тела от времени имеет вид:


$$x = x_0 + v \cdot t$$

где  $x_0$  — начальная координата тела, t — момент времени после начала движения, v — постоянная величина, равная изменению координаты тела за единицу времени, x — координата тела в момент времени t.



### 3. Скорость прямолинейного равномерного движения

Если тело движется равномерно прямолинейно, то физическую величину v, численно равную изменению его координаты за единицу времени, называют значением скорости равномерного прямолинейного движения. В СИ единица скорости — метр в секунду (м/с). Скорость — векторная величина, которая характеризуется не только своим модулем, но и направлением. Если значение скорости положительно, то скорость направлена в положительном направлении оси X. Если же значение скорости отрицательно, то скорость направлена в отрицательном направлении оси X.



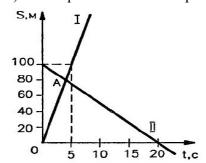
Задача № 1. Ласточка летит со скоростью 36 км/ч. Какой путь она преодолеет

Дано: Peweнue: 
$$v = 36 \text{ км/ч}$$
  $s = vt$   $t = 0,5 \text{ ч}$   $s = 36 \text{ км/ч} \cdot 0,5 \text{ ч} = 18 \text{ км}$   $s = 7$  Ombem:  $18 \text{ км}$ 

Задача № 1. Конькобежец может развивать скорость до 13 м/с. За какое время он пробежит дистанцию длиной 2,6 км?

Дано: 
$$v = 13 \text{ м/c}$$
  $s = 2,6 \text{ км}$   $2600 \text{ м}$   $t = \frac{s}{v}$   $t = \frac{2600 \text{ м}}{13 \text{ м/c}} = 200 \text{ c}$   $Omsem: 200 \text{ c}$ 

Задача № 3. Автомобиль «Чайка» развивает скорость до 160 км/ч, а почтовый голубь — до 16 м/с. Сможет ли голубь обогнать автомобиль?


Решение. Чтобы сравнить скорости движения тел, надо перевести их в одинаковые единицы измерения. Перевод скорости из одних единиц в другие выполняют следующим образом. 160 кm = 160000 m, 1 ч = 3600 с. Следовательно, за 1 с автомобиль пройдет путь 160000 : 3600 = 44 (м), значит:

$$160 \text{ km/y} = \frac{160000 \text{ m}}{3600 \text{ c}} = 44 \text{ m/c}$$

Ответ: Голубь не обгонит автомобиль, так как 16 м/c < 44 м/c.

Задача № 4. Вдоль дороги навстречу друг другу летят скворец и комнатная муха. На рисунке представлены графики движения скворца (I) и мухи (II). Пользуясь графиком, определите:

- 1) Каковы скорости движения скворца и мухи?
- 2) Через сколько секунд после начала движения они встретятся?
- 3) Какое расстояние они пролетят до места встречи?



Решение

1. Скорость движения скворца определим по формуле v=S/t. Выберем на графике произвольное время и определим, какое расстояние за это время пролетел скворец. Видно, что за 5 с скворец пролетел 100 м. Тогда

$$v_{\rm I} = \frac{100 \text{ M}}{5 \text{ c}} = 20 \text{ m/c}.$$

Аналогично найдем скорость движения мухи:

$$v_{\rm II} = \frac{100 \text{ M}}{20 \text{ C}} = 5 \text{ M/c}.$$

- 2. Точка А (точка пересечения графиков движения) соответствует моменту встречи. Скворец и муха встретятся через 4 секунды.
- 3. Скворец до места встречи пролетит расстояние  $S_I = 80$  м. Муха пролетит расстояние  $S_{II} = 100$  м 80 м = 20 м.

Ответ: 1) скворец 20 м/с, муха 5 м/с, 2) через 4 с, 3) скворец 80 м, муха 20 м

Задача № 5. Определите среднюю скорость движения плота, если за 20 минут он переместился на 900 м. Скорость выразить в км/ч.

Решение:.

$$S = 900 \text{ м} = 0.9 \text{ км}$$
 $t = 20 \text{ мин} = \frac{20}{60} \text{ ч} = \frac{1}{3} \text{ ч}$ 
 $v_{cp} = \frac{0.9}{\frac{1}{3}} = 0.9 \cdot 3 = 2.7 \text{ км/ч}$ 

Ответ: Средняя скорость плота 2,7 км/ч.

Задача № 6. Стоящий на эскалаторе человек поднимается за 2 мин, а бегущий по эскалатору — за 40 с. За какое время этот человек поднимется по неподвижному эскалатору?

ОТВЕТ: 1 мин.

Решение. Стоящий на эскалаторе человек за 1 мин перемещается на *половину* длины эскалатора, а бегущий — перемещается на *полторы* длины эскалатора. Следовательно, идущий по неподвижному эскалатору человек за 1 мин перемещается как раз на длину эскалатора.

Задача № 7. Моторная лодка за 3 ч проходит расстояние от города до поселка, расположенного ниже по течению реки. Сколько времени займет обратный путь, если скорость движения лодки относительно воды в 4 раза больше скорости течения? ОТВЕТ: 5 ч.

Решение. Обозначим скорость течения v. При движении по течению скорость лодки относительно берега равна 5v, а при движении против течения ее скорость равна 3v. Следовательно, время движения против течения в 5/3 раза больше, чем время движения по течению.

Рыбак плыл по реке на лодке, зацепил шляпой за мост, и она свалилась в воду. Через час рыбак спохватился, повернул обратно и подобрал шляпу на 4 км ниже моста. Какова скорость течения? Скорость лодки относительно воды оставалась неизменной по модулю. ОТВЕТ: 2 км/ч.

Решение. Удобно рассматривать движение шляпы и лодки относительно воды, потому что относительно воды шляпа неподвижна, а скорость лодки, когда она плывет от шляпы и к шляпе, по модулю одна и та же — так, как это было бы в озере. Следовательно, после поворота рыбак плыл к шляпе тоже 1 ч, т. е. он подобрал шляпу через 2 ч после того, как уронил ее. По условию за это время шляпа проплыла по течению 4 км, откуда следует, что скорость течения 2 км/ч.

Задача № 9 (олимпиадного уровня). Из городов А и Б навстречу друг другу по прямому шоссе одновременно выехали два велосипедиста. Скорость первого 10 км/ч, скорость второго 15 км/ч. Одновременно с велосипедистами из города А вылетела ласточка. Она долетает до второго велосипедиста, разворачивается. Долетев до первого велосипедиста, разворачивается и летает так между ними до тех пор, пока велосипедисты не встретятся. Какой путь пролетела ласточка, если скорость ее движения 50 км/ч, а расстояние между городами 100 км? Временем разворота ласточки можно пренебречь.

ОТВЕТ: 200 км.

Решение. Расстояние между велосипедистами каждый час уменьшается на 25 км. Поскольку начальное расстояние между ними 100 км, они встретятся через 4 ч. Все это время ласточка будет летать со скоростью 50 км/ч, следовательно, ее путь составит 200 км.

### 5.Вопросы для подготовки к промежуточной аттестации

Промежуточная аттестация проводится в форме дифференцированного зачёта.

# Вопросы по теории:

- 1. Механическое движение и его виды. Относительность движения. Система отсчёта. Материальная точка. Скорость. Ускорение. Прямолинейное равноускоренное движение.
- 2. Первый закон Ньютона. Инерциальные системы отсчёта. Взаимодействие тел. Сила. Масса. Второй закон Ньютона. Третий закон Ньютона.
- 3. Импульс тела. Закон сохранения импульса. Реактивное движение в природе и технике.
- 4. Закон всемирного тяготения. Сила тяжести. Невесомость.
- 5. Сила трения скольжения. Сила упругости. Закон Гука.
- 6. Работа. Механическая энергия. Кинетическая и потенциальная энергия. Закон сохранения механической энергии.
- 7. Механические колебания. Свободные и вынужденные колебания. Резонанс. Превращение энергии при механических колебаниях.
- 8. Основные положения молекулярно кинетической теории (МКТ) строения вещества и их экспериментальные доказательства. Идеальный газ. Основное уравнение МКТ идеального газа. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества.
- 9. Давление газа. Уравнение состояния идеального газа (Уравнение Менделеева Клапейрона). Изопроцессы.
- 10. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха.
- 11. Работа в термодинамике. Внутренняя энергия. Первый закон термодинамики. Адиабатный процесс.
- 12. Взаимодействие заряженных тел. Закон кулона. Закон сохранения электрического заряда.
- 13. Конденсаторы. Ёмкость конденсатора. Энергия заряженного конденсатора. Применение конденсаторов.
- 14. Электрический ток. Работа и мощность в цепи постоянного тока. Закон Ома для полной цепи.
- 15. Магнитное поле, условия его существования. Действие магнитного поля на электрический заряд и опыты, иллюстрирующие это действие. Магнитная индукция.
- 16. Полупроводники. Собственная и примесная проводимость полупроводников. Р-п переход. Полупроводниковые приборы.
- 17. Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца.
- 18. Явление самоиндукции. Индуктивность. Энергия магнитного поля.
- 19. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Превращение энергии при электромагнитных колебаниях.
- 20. Электромагнитное поле. Электромагнитные волны. Различные виды электромагнитных излучений и их практическое применение.
- 21. Электромагнитная природа света. Волновые свойства света.
- 22. Опыты Резерфорда по рассеянию альфа частиц. Ядерная модель атома.
- 23. Квантовые постулаты Бора.
- 24. Испускание и поглощение света атомами. Спектры. Спектральный анализ.
- 25. Квантовые свойства света. Фотоэффект и его законы. Применение фотоэффекта в технике.

- 26. Состав ядра атома. Ядерные силы. Дефект массы и энергия связи ядра атома. Ядерные реакции. Ядерная энергетика.
- 27. Радиоактивность. Виды радиоактивных излучений и методы их регистрации. Влияние ионизирующей радиации на живые организмы.

### Расчётные задачи:

- 1. Задача на применение закона Кулона.
- 2. Задача на расчёт напряжённости электрического поля точечного заряда.
- 3. Задача на определение индукции магнитного поля по закону Ампера.
- 4. Задача на применение уравнения состояния идеального газа.
- 5. Задача на расчёт силы Лоренца.
- 6. Задача на применение закона электромагнитной индукции.
- 7. Задача на определение нуклонного состава ядра.
- 8. Задача на применение уравнения Эйнштейна для фотоэффекта.
- 9. Задача на определение периода свободных колебаний в колебательном контуре.
- 10. Задача на определение модуля Юнга материала, из которого изготовлена проволока.
- 11. Задача на расчёт ускорения тела. Задача на применение первого закона термодинамики.
- 12. Задача на применение законов сохранения массового и электрического заряда.
- 13. Задача на применение закона сохранения механической энергии.
- 14. Задача на движение или равновесие заряженной частицы в электрическом поле.
- 15. Задача на расчёт сопротивления проводника.
- 16. Задача на применение Закона Джоуля Ленца.
- 17. Задача на расчёт цепи с последовательным соединением проводников.

### Качественные задачи по разделам:

- 1. Механика
- 2. Кинематика
- 3. Законы сохранения
- 4. Молекулярная физика
- 5. Строение жидкостей, газов и твёрдых тел
- 6. Основы термодинамики
- 7. Тепловые двигатели
- 8. Электродинамика
- 9. Квантовая физика

### 6. Рекомендуемая литература

## Рекомендуемая литература (основная и дополнительная)

Основной источник:

Касаткина И.Л. Физика для колледжей. - Ростов н/Д: Феникс, 2017. - 671 с. Дополнительные источники:

- 1. Трофимова Т.И. Курс физики: учеб. пособие для студ. учреждений высш. проф. образования 19-е изд., стер. М.: Издательский центр «Академия», 2012. 360 с.
- 2. Мякишев Г.Я, Буховцев Б.Б, Сотский Н.Н. Физика 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни 19-е изд. М: Просвещение, 2010. 366 с.
- 3. Мякишев Г.Я, Буховцев Б.Б, Чаругин В.М. Физика 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни 17-е изд. М: Просвещение, 2011. 399 с.
- 4. Ливенцев Н.М. Курс физики для Медвузов 4-е изд. Издательство «Высшая школа», 1969. 447 с.
- 5. Прохоров А.М. Физическая энциклопедия. Москва. «Советская энциклопедия», 1988. 704 с.

### Интернет- ресурсы

- 1. Федеральный центр информационно-образовательных ресурсов: URL: www. fcior. edu. ru (дата обращения 03.04.2017).
- 2. Академик. Словари и энциклопедии: URL: wwww. dic. academic. ru (дата обращения 03.04.2017).
- 3. Books Gid. Электронная библиотека: URL: www. booksgid. com (дата обращения 03.04.2017).
- 4. Глобалтека. Глобальная библиотека научных ресурсов: URL: www. globalteka. ru (дата обращения 03.04.2017).
- 5. Единое окно доступа к образовательным ресурсам: URL: www. window. edu. ru (дата обращения 03.04.2017).
- 6. Российский образовательный портал. Доступность, качество, эффективность: URL: www. school. edu. ru (дата обращения 03.04.2017).
- 7. Образовательные ресурсы Интернета Физика: URL: www. alleng. ru/edu/phys. htm (дата обращения 03.04.2017).
- 8. Единая коллекция цифровых образовательных ресурсов: URL: www. school-collection. edu. Ru (дата обращения 03.04.2017).
- 9. Учебно-методическая газета «Физика»:URL: https://fiz.1september. ru (дата обращения 03.04.2017).
- 10. Нобелевские лауреаты по физике: URL: www. n-t. ru/nl/fz (дата обращения 03.04.2017).
- 11. Ядерная физика в Интернете: URL: www. nuclphys. sinp. msu. ru (дата обращения 03.04.2017).
- 12. Научно-популярный физико-математический журнал «Квант»: URL: www. kvant. mccme. Ru (дата обращения 03.04.2017).
- 13. Естественно-научный журнал для молодежи «Путь в науку»: URL: www. yos. ru/natural-sciences/html (дата обращения 03.04.2017).